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Self-guiding of intense lasers through a long
distance is crucial for many applications

Remote sensing devices using lasers, Lightning control using lasers
Lidar: for Light detection and ranging.

Source: http://sparkingdawn.com
Source: Teramobile



Self-guiding of lasers is crucial for
many applications

Source: IZEST Launching workshop 2011
http://izest.polytechnique.edu

|IZEST: 100GeV electron generation from laser
wakefield on PETAL 5
PETAL: 3.5 kJ, 1053 nm, 0.5 ~10 ps



Self-focusing of lasers in plasma
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B Usually both relativistic effect (change of electron mass m,) and
transverse ponderomotive force (change of electron density n,)
may lead to laser self-guiding in plasma.

B When P,>P_=17(n/n.,)GW, relativistic self-focusing can overcome
defocusing, according theory in the weakly relativistic case.  °



Self-guiding in laser wakefield
acceleration

Matched beam spot size in the
bubble regime or blowout regime:

k,R=k,wy=2/ay.

ag = 2(P/P.)"/3

R: the blowout radius
w,: the laser spot radius
k,: the plasma wave vector

a,. the normalized laser peak amplitude
P. =17(nJ/n,) (GW) W. LU et al. Phys. Rev. ST Accel.
Beams 10, 061301 (2007) 7




Plasma channels are often adopted

GeV beams from gas-fill
capillary at LBNL-Oxford

10 <4 900C
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MeV

Laser: 40TW 37fs (a=1.4)

Capillary: 312um diam. , 33mm length
Plasma n_: 4.3x10"® cm-3

W.P. Leemans et al., Nature Physics 2,
696 (2006);

D. J. Spence et al. Phys. Rev. E 63
015401(R) (2001) 8




Does the self-focusing criterion holds for PW lasers?

B Current situation (<=100 TW for most experiments)
(a) P,.=17(n,/n_.) (GW) is broadly adopted in LWFA designs
and experiments, and confirmed in simulations;
(b) General view: ponderomotive force helps focusing, which
produces channel-like plasma density distributions. Often
one generates such preformed channels for laser guiding

B What about for PW lasers or tens or hundreds of P, for
future experiments? Our results indicate that
(a) Ponderomotive defocusing may occur
(b) P>P.is not enough for self-focusing and there is upper
limit power P, for self-focusing, i.e., P.<P<P,
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Ponderomotive defocusing of PW lasers (far above P )
(2D PIC simulations)
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Defocusing is found even for
PW lasers, even though self-

focusing is found at 9TW. 10



Similar results are found in 3D PIC simulations

Self-focusing with

Initial pulse EZ (t=0) 10Pc (9.2TW) at z,

E,” (=€)

Defocusing with N, t=%,c) Electron density
320Pc (294TW) with 320Pc (294TW)
at z, atzp

11
W-M Wang, Z-M Sheng et al., submitted.



Similar results are found in 3D PIC simulations

Both 2D and 3D PIC simulations indicate there
is an upper-limit power in addition to the
lower-limit critial power Pc=17(n,/n_) (GW)
for self-focusing

12



Upper-limit power P for self-focusing or
power threshold for ponderomotive defocusing

S I'=T, o- $ l:"p (r=r0)

-

Self-guided propagation requires

Fp(’}“ — ’7“0) + FES(T’ — 7“0) = ()

F : transverse ponderomotive
F..: transverse Coulomb force
ro: laser beam radius,

Laser: ¢A/mc® = e,apsin(wé/m0)sin(wé) exp(—r?/r3)

orce

—

F =-mc*V,y, F.=—€2me’

P
1/2

y=~1+a®/2 or (1+a’) 13



Upper-limit power P for self-focusing or
power threshold for ponderomotive defocusing

Fo(r=r9)+Fes(r =19) =0

Note that:

P.: due to the relativistic effect
P,: due to the ponderomotive force

14



Lower-limit density n,; for self-focusing

»> For laser self-guiding, it is required that the
laser power P satisfies: P_<P<P

P.<P<P, => Nn,>0.074n_(\%/ry?)

» A lower-limit density for self-guiding
np = = x 0.074n,

"o

2

ny = s x 0.044n, 2D slab geometry
O

3D geometry

» Therelation of Pu and Pc in terms of n, and n;

n

L

P = (neo j P 2D or 3D geometry

15



Verification of n; and P, by PIC simulations

3D PIC 2D PIC
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1) n,<n,, self-focusing never occurs with any laser power;
n,=4n, , self-focusing starts to appear with P,=10P,

roe=4dum
2=lum

2) P;=5P,, ponderomotive-force defocusing starts to appear obviously;
increasing P,, the laser approaches to the propagation in vacuum

3) 2D PIC results are similar (4n;,—5n;, 5P, —2P))

16



2D PIC simulations with larger beam radius r,
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» With n,;=5n; and 6n,, self-focusing starts to appear for r,=8 and 16 um
» With P)=2P and 10 P,, defocusing starts to appear obviously

» Our theory model agrees with simulation better with smaller r,

17



Further examination with given I,
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Effect of inhomogeneous plasma

Case 1: normal plasma channel

Low density

Case 2: plasma anti-channel

W\NW
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A plasma anti-channel may be preferred for self-
guided propagation at high peak power over 1PW
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This agrees with our theory that there is a lower limit of the
plasma density for self-guided propagation.

P.<P<P, => Nn,>0.074n_(\?/ry?)

P,=2P,
n,=5n;
ry=4um
A=lum

The laser pulse
In an anti-
channel is better
self-guided




Summary

B We demonstrate that transverse ponderomotive force may
lead to defocusing at high peak laser powers, e.g., PW lasers.

B Power threshold for ponderomotive defocusing or an upper-
limit power P, for self-focusing is given as a function of initial
plasma density n,,and laser spot size r,. In order to have self-
guided propagation of laser pulses, the laser power P should
satisfy Pc<P<Pu.

B A lower-limit density n, for self-guilding is given.

H At or above PW with P>P,, preformed plasma channels may
be not favorable for laser self-guiding. In stead, an anti-channel
may be preferred.
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Thank You'!



